五年级下册数学重要知识点(汇编七篇)。
在现实学习生活中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是掌握某个问题/知识的学习要点。想要一份整理好的知识点吗?下面是小编为大家收集的数学五年级下册知识点,欢迎阅读与收藏。
五年级下册数学重要知识点 篇1
1、小数乘法的计算法则:先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
2、计算中的发现:①一个数(0除外)乘小于1的数,积比原来的数小。如:3.7×0.2=0.74
②一个数(0除外)乘大于1的数,积比原来的数大。如:3.7×2=7.4
③一个数(0除外)乘于1,积和原来的.数相等。如:3.5×1=3.5
3、小数乘法的验算方法:①把因数的位置交换,再乘一遍。(通用)②积÷一个因数=另一个因数。
4、小数四则运算顺序跟整数是一样的。(加、减法是第一级,乘、除法是第二级)
①一个算式里,如果含有同一级运算,要从左往右依次计算。
②一个算式里,如果含有两级运算,要先算第二级运算,后算第一级运算。(即是先×÷后+?)
③一个算式里,如果有括号,先算括号里面的,后算括号外面的。
5、积的近似值:先求出积,根据要求用“四舍五入”法保留一定的小数位数。
6、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
五年级下册数学重要知识点 篇2
一、教学目标
知识与技能:掌握长方体和正方体表面积的计算方法,能够正确计算长方体和正方体的表面积。
过程与方法:通过观察、操作等活动,培养学生的空间想象能力和解决问题的能力。
情感态度与价值观:通过合作学习,激发学生的学习兴趣,培养学生的合作意识和探究精神。
二、教学重难点
重点:长方体和正方体表面积的计算方法。
难点:理解长方体和正方体表面积的组成。
三、教学准备
教具:长方体、正方体模型、彩纸等。
学具:练习本、铅笔、直尺等。
四、教学过程
导入新课
通过展示一些长方体和正方体的图片或实物,引出长方体和正方体的`概念,并复习长方体和正方体的基本特征。
探究新知
(1)长方体表面积的计算方法
首先,让学生观察长方体模型,并思考长方体的表面积是由哪些面组成的。然后,引导学生探究长方体表面积的计算方法,并让学生尝试计算一些简单的长方体表面积的题目。
(2)正方体表面积的计算方法
与长方体类似,首先让学生观察正方体模型,并思考正方体的表面积是由哪些面组成的。然后,引导学生探究正方体表面积的计算方法,并让学生尝试计算一些简单的正方体表面积的题目。
巩固练习
让学生独立完成一些练习题,巩固所学知识。同时,教师巡视指导,及时纠正学生的错误。
拓展延伸
通过一些实际问题和游戏,引导学生将所学知识应用于生活中,培养学生的应用意识和实践能力。例如,让学生计算家中某个长方体或正方体物品的表面积。
课堂小结
总结本节课所学的知识点和解题方法,强调理解长方体和正方体表面积的组成的重要性,并布置适量的课后作业。
五、教学反思
本节课通过观察、操作等活动,让学生掌握了长方体和正方体表面积的计算方法,并培养了学生的空间想象能力和解决问题的能力。但是,在教学过程中,我发现部分学生在理解长方体和正方体表面积的组成时存在困难,需要在后续的教学中加强直观演示和解释。
五年级下册数学重要知识点 篇3
整除的算式的特征:
1、除数、被除数都是自然数,且除数不为0。
2、被除数除以除数,商是自然数而没有余数。
例:15能被5整除,我们就说,15是5的
倍数,5是15的因数。
知识点一:因数
问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?
所以12的因数有:
注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。
例1 18的因数有那些?
方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6
方法二:根据整除的意义得到
18÷1=18 18÷2=9 18÷3=6
所以18的因数有:
表示方法:
1、列举法︰12的因数有:1,2,3,4,6,12
2、用集合表示︰
练习1:30的因数有哪些?36呢?
30的因数有:
36的因数有:
观察:18的最小因数是(),的因数是()
30的最小因数是(),的因数是)
36的最小因数是(),的因数是()
一个数的因数的个数是有限的,一个数的最小因数是(),因数是()
你要知道:
(1)1的因数只有1,的因数和最小的因数都是它本身。
(2)除1以外的整数,至少有两个因数。
(3)任何自然数都有因数1。
知识点二:倍数
问题二:2的倍数有哪些?
2的倍数有:2,4,6,8 …
例1、小蜗牛找倍数(找出3的倍数)。
练习3、5的倍数有哪些?7的倍数呢?
5的'倍数:
7的倍数:
一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。
用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。
说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?
1、根据算式:4×8=32
说一说,谁是谁的因数?谁是的倍数?
2、根据算式:63÷7=9
说一说,谁是谁的因数?谁是的倍数?
3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?
知识点三:质数和合数
1、自然数按因数的个数来分:质数、合数、1、0四类。
(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。“1”既不是质数,也不是合数。
注:
①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以内的质数:有8个()
④ 100以内的质数有25个:()
关系:奇数×奇数=奇数质数×质数=合数
2、常见、最小
A的最小因数是:1;最小的奇数是:1;
A的因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图
例:
分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3
4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:
分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:
5、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
6、两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
三、经验之谈:
书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;
短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数
图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。
五年级下册数学重要知识点 篇4
一、复习内容及要点:
1、因数和倍数:
复习时,要抓住数的整除特征以及质数和合数、公因数、公倍数、互质数等一些重要的概念,把一些易混淆的概念区别开。这些内容是以后学习分数和分数四则计算的基础,务必要求学生掌握好。
2、分数和意义和性质
复习分数和意义和性质,要使学生清楚地知道什么叫做分数,分数与除法的关系如何。让学生知道,分数可以表示一个量,当一个量不能用整数个计量单位来表示时,可以用分数表示;分数还可以表示两个量的关系,在复习的过程中,还要让学生弄清分数与整数、小数的联系,以及分数单位、约分和通分等重要基础知识,为学生今后学习分数的计算和应用题打下扎实的基础。
3、分数的加法和减法
注意使学生弄清同分母分数加、减法和异分母分数加、减法的联系和区别。另外,还要注意使学生掌握在进行分数、小数加减混合运算时,怎样算比较简便,真正提高学生正确、迅速、合理、灵活的计算能力。计算是复习中的重点内容,提高学生计算的正确率是非常重要的,所以训练学生良好的计算习惯是势在必行的。
4、长方体和正方体:
在复习长方体和正方体的表面积、体积及容积时,除了要掌握好它们的外在特征之外,还要根据已有的'空间观念,分清表面积和体积、容积的概念,然后再做习题。在复习中,要适当沟通知识间的联系,注意综合运用知识解决一些简单的实际问题,在解决问题中,培养学生良好的计算习惯很重要。
5、统计
在复习中一是注意与先前学习过的统计知识的联系,帮助学生理解所学的新内容。二是注意提供丰富的现实生活素材,凸现统计知识和方法的价值。进一步扩大学生处理信息的范围,更好地体会统计知识和方法在实际生活中的作用,有利于发展学生的统计观念,形成从数学的角度思考问题的良好习惯。
6、图形的变换
通过复习让学生进一步认识图形的轴对称及轴对称的特征和性质,能画出一个图形的轴对称图形和画出一个简单图形旋转固定度数后的图形,发展空间观念。旋转是本节内容的难点内容,应进一步加强学生旋转方面的讲解与动手探索,争取让学生都掌握有关旋转的内容。
二、具体安排
6.26.4复习《因数和倍数》
6.56.9复习长方体和正方体 6.136.17复习《图形的变换》、《统计》、《数学广角》 以上安排可以根据学生的具体情况灵活的使用。
五年级下册数学重要知识点 篇5
知识背景和目标定位:
《折线统计图》是义务教育课程标准实验教科书(人教版)五年级下册的内容,它是在学生已经掌握了收集、整理、描述、分析数据的基本方法,会用统计表(单式和复式)和条形统计图(单式和复式)来表示统计结果,并能根据统计图表解决简单的实际问题;了解了统计在现实生活中的意义和作用,建立了统计的观念的基础上,又一次认识一种新的统计图。
基于以上认识,把《折线统计图》的教学目标定位于以下几点:
1、认识折线统计图,并知道其特征。
2、能从折线统计图中发现数学问题,同时能够依据数据变化的特征进行合理的推测。
3、通过对数据的简单分析,进一步体会统计在生活中的意义和作用。
案例描述:
一、创设情境。
1、观看科技展录像。看到这些画面,你想说点什么?
2、为了使大家能更清楚地了解和分析这几年参观科技展人数的情况,你认为可以用哪些方法来表示参观人数呢?
3、课前我已收集了近几年来参观科技馆的人数,并把它制成了这样一张统计表。仔细观察,你能从统计表中了解到什么信息?
参观科技展人数统计表 20xx年4月
出示问题:在相邻的两个年份中,( )年到( )年参观人数增加最快。
你怎么得到这个答案的?你是用什么方法知道的?(计算)
4、能不能不通过计算,换一种方式就可以直观得看出20xx年到20xx年人数增加最快呢?(条形统计图)
但是,我在科技馆发现了他们用这些数据制成了这样的一幅统计图。(课件折线统计图)
二、探究新知
1、初步感知
(1)这幅统计图中,横轴表示?纵轴表示?
(2)每年的参观人数在这幅统计图上都找到吗? 谁来指着说一说。
(3)这幅统计图是通过什么来表示出每年的参观人数的?(板书:点:数量多少)
(4)思考:目前这幅统计图也只是反映出了统计表里的信息,还不能解决刚才问题?
看来这个问题有必要我们研究研究。我们不妨带着下面三个问题来看一看。仔细观察,独立思考。然后再把你的想法在小组内说一说。
2、深入探究
(1)哪年参观人数最多?哪年最少?
(2)哪年到哪年人数没有变化?哪年到哪年人数增加最快?
分析:回到前面的问题,在统计表中想知道参观人数增加最快的是哪年到哪年,是通过什么方法得出的?那现在能直观的看出来了吗?(通过线的陡度来看)
板书:平—不变
陡—快
(3)借助这幅统计图,体会一下这几年参观人数整体变化情况。你是怎么看出的?
让学生看整条线段,感受整体趋势。
课件演示整体上升的过程。
你们是通过什么看出来的上升的趋势的?(板书:线)
总结:通过折线的起伏,来反映出数量的增减变化。这正是这种统计图的特点,不仅能够看出数量多少,而且能够更清楚地看数量的增减变化情况。(补充板书:增减变化)。
3、为统计图起名字
你知道这种统计图叫什么名字吗?让学生根据这幅统计图的特点,自由起名。(板书课题:折线统计图)
4、预测
能不能根据这幅折线统计图来猜想一下,20xx年会有多少人来参观?
总结:同学们,这只是一种猜测,不管是多是少,都有可能,要想知道究竟有多少人来参观,还要年底再作一次调查。
5、感知生活中的折线统计图。
我们已经对折线统计图已经有了一定的认识,想想,生活中你还从哪儿见过折线统计图?(报纸上、股市上、父母单位、电视里……)
三、实践应用。
1、分析折线统计图
出示马鞍山师范附小四年级春季收费标准统计图,从图中你可以获得哪些信息?有什么想说的?
总结:全国在义务教育阶段,开始免收学杂费了,这项改革是真正惠及到咱们千家万户的好事、实事,使得大批因家庭经济困难辍学儿童能重返校园,是义务教育的一座新的里程碑。
2、聪聪、明明两人患病期间体温变化的统计图
请学生当小医生,分析一下聪聪和明明体温变化情况。
3、“小华学习了折线统计图,觉得折线统计图的优点很明显,就去文具店作了调查,并绘制了一幅统计图。请你认真观察分析这幅折线统计图,你发现了什么?”(不同文具的销售情况)
(1)让学生体会到若描述的是不同事物,则需要制条形统计图;若描述同一事物的变化趋势,则制成折线统计图。
(2)如果想让它合理,怎么在这张统计图上作一些简单的修改?(改成条形统计图)
(3)做完这个问题后呢,就给咱们带来了一个新的.问题:在什么情况下,绘制折线统计图,在什么情况下绘制条形统计图,这个问题其实是以后要研究的内容,你们刚才的发现已经很了不起了。59900.nEt
四、拓展。
(课件图文并茂出示)探究我国历史,于上古时代已能看见统计图理念的身影。周易系辞记载“上古结绳而治”,事大,大结其绳,事小,小结其绳,显示已使用“分组”的观念区分大、小事,并运用实体的图像表达所观察到的事象。
到商汤推行井田制度,把地划为九块,形如井字,八家各分一块为私田,中为公田,显见井田制度已略具统计图之轮廓。
到宋代,南宋史学家郑樵的图谱思想等,则与现代统计图表的制图原则相近。
至清朝,统计图已广泛的制作与运用,包括农工商统计图、交通统计图及教育统计图等。至今,统计图已广泛用于生产生活,也演变出形式各异的统计图。除了我们已学过的条形统计图、折线统计图以外,还有柱形统计图、饼形统计图、面积统计图、雷达统计图等等。
师:孩子,大自然的千姿百态,无穷无尽的变幻,造就了无以计数的物象形态。其实在自然界中也存在天然的统计图,看(课件出示树的年轮)这不正是大自然的杰作吗?
五、教学反思。
我教学复式折现统计图这节统计课的内容,感觉有许多应该改进的地方。
在设计课的时候,我力求做到让孩子们在感知单式折现统计图和统计表的基础上,体会到二者的局限想以及复式折现统计图的优点。复式折现统计图便于比较两个数量的变化情况;便于比较两个数量总体发展趋势和阶段发展情况;同时对发展的数量作出简单的未来发展趋势预测。
本着这样的设计理念,我尽量将课堂设计的内容丰满一些,训练点广泛一些,同时在发现中获取学习数学的乐趣。
但是在设计课的时候我没有备透学生。
首先,学生的课前复习没有做好。
课前,我应该让孩子们做好单式折现统计图的复习,在复习中巩固绘制的方法,技巧。即:描点,标数,连线。毕竟这是四年级的知识,时隔一年时间学生已经将知识遗忘差不多了。另外根据我班学生的实际情况,这节复习课是十分有必要的。如果做好了复习,那么本节课的重难点也一定会得以突破。
其次,对于此类统计学的数学知识,应该给学生准确的数学语言进行描述。
例如:某一数量总体呈现何种趋势;某一阶段呈现什么趋势;波动较大;平稳发展等数学语言进行描述。如果教师能够相机真确引导,学生就不会在课堂中感到无话可说了。课下我问过许多同学为什不举手回答问题呢?他们说,不知道怎么说服清楚。
第三,教师过于相信学优生,导致出现绘图马虎现象没有及时更正。
通过本节课的教学,我又一次清楚的认识到备课更应备好学生,不能单凭自己的“一厢情愿”设计课。要知道,再好的预设,必须考虑学生的实际,考虑学生的接受程度,这样的生成才会精彩。一堂课可以不完成教学任务,但必须让学生在原有基础上得到发展。毕竟我们的课堂不是作秀。平时中求发展才是真正为学生着想。
五年级下册数学重要知识点 篇6
一、指导思想:
根据本学期工作计划,结合班级学生的学习情况,以提高学生实际数学能力为重点,力求挖掘学生的积极性和学习潜在能力,切实培养学生发现问题、提出问题、探究问题解决问题的能力,同时培养学生的合作意识和与同伴的交流能力,全面提高学生的数学成绩。
二、学生分析:
学生对于分数的理解、简便运算及解决问题等方面容易出错,可能由于粗心或计算能力比较差,经常出错。另外正方形和长方形的表面积和体积计算也不是很熟练,再者有一部分学生浮躁、懒散、不完成作业、学习态度不够端正,这都是复习过程中值得引起注意的地方。
三、复习时间 :
第15周~第19周
四、复习形式:
基础复习、分类复习、综合复习
五、复习内容
本册教材9个单元:1、观察物体 2、因数与倍数 3、长方体和正方体 探索图形4、分数的意义和性质5、图形的运动 6、分数的加法和减法 打电话7、折线统计图 7、数学广角—找次品 9、总复习
复习时按照整册教材的知识体系分——数与代数、空间与图形、统计图表、实践与综合运用这四大块来进行知识的梳理。
六、复习目标:
1.通过整理和复习,使学生会掌握分数加减法运算的方法,并能正确的进行计算。
2.通过整理和复习,使学生掌握正方体、长方体的表面积和体积的计算方法
3.通过整理和复习,使学生能在方格纸上画出上三视图;将简单图形旋转90度。
4.通过整理和复习,使学生知道复式折线统计图的作用,会用折线统计图来表示数据。
5.通过整理和复习,使学生经历回顾本学期的`学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和能力。
6、通过整理和复习,是学生知道打电话和找次品中运用优化的思想解决问题。
七、具体安排 :
八、复习措施:
(1)教会学生复习方法,先全面复习每一单元,再重点复习有关重点内容。然后引导学生进行单元训练,对于出错多的知识点再次进行讲评和训练。
(2)采用多种方法,提高学生的学习兴趣。
(3)加强补差,让优等生帮助后进生。
(4)课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题能力的培养,并相互进行口算能力的培养。
(5)多采取独立思考、相互协作的复习方式。给学生留有较多的自主空间,充分利用小组互助的形式,通过多种复习活动发挥每个学生的特点和优势。对各类学生给予充分的信任和鼓励,师生共同努力,使不同层次的学生都有较大提高和发展。
五年级下册数学重要知识点 篇7
1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。
2、分母越大,分数单位越小,最大的分数单位是2(1)。
3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。
4、4米的5(1)和1米的5(4)同样长。
5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。
7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。
8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)
9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)
10、分子不是分母倍数的假分数,可以写成整数和真分数合成的.数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作
13(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。
11、把分数化成小数的方法:用分数的分子除以分母。
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……
13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。
16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。
17、分数大小比较的应用题:工作效率大的快,工作时间小的快。
18、一些特殊分数的值:
2(1)=0.54(1)=0.254(3)=0.755(1)=0.25(2)=0.45(3)=0.6
5(4)=0.88(1)=0.1258(3)=0.3758(5)=0.6258(7)=0.87510(1)=0.116(1)=0.0625
16(3)=0.187516(5)=0.312520(1)=0.0525(1)=0.0450(1)=0.02100(1)=0.01
19、求一个数是(占)另一个数的几分之几,用除法列算式计算。